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What could we do with models that predict the kinds of
iInteractions nanomaterials and biological organisms have?

* Develop safer technological utilization of nanotechnology (reduce
risks)
* Protect workers and consumers
* Protect patients
* Protect the environment from new pollutants

* |dentify more useful and effective nanomaterials (improve function)
* Better materials
* Better drugs

* Enable design tradeoffs between risk and function



We want to connect potential risks of and usefulness of
nanomaterials to specific particle characteristics
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Based primarily on in vivo data sets a few nanomaterial
QSARs for toxicity have been proposed

Puzyn T. et al. 2011 ] ,
Enthalpy of formation of a gaseous cation:
Me (s)— Me" (g)+n é‘ AHjger
Fourches D. et al. 2011 Surface area, atom and bond counts, Kier & Hall connectivity indices, kappa
shape indices, adjacency and distance matrix descriptors, pharmacophore
feature descriptors, and molecular charges
Liu R. et al. 2011 NM and NO: number of metal and Oxygen atoms, mMe (g-mol-1): atomic

mass of the nanoparticle metal, mMeO (g-mol-1): molecular weight of the
metal oxide, GMe and PMe: group and period of the nanoparticle metal,
EMeO (kcal-eqv-1): atomization energy of the metal oxide, d (nm):

nanoparticle primary size, Zw (mV): zeta potential (in water at pH=7.4), IEP:
isoelectric point.
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Data sources for this investigation made up of 162
oulmonary nanomaterial exposure studies in rodents

Table 1: Number of unique nanomaterial variants . . . o
by partide type included In each dataset * Although dominated by titania, silica, CNT,
and ceria studies, there is a substantial

Nanomaterial Pulmonary In Vitro
i Dataser  Dataset amount of data existing in published sources
Aav: : ’ on pulmonary exposures to nanomaterials
Ceo 4 0 .
CdO 3 0 e 162 separate studies
Celz 20 g
Cosds S ; * 2136 unigue exposure groups
Cu J 9
S : 0 * Focused primarily on inflammation and other
Feil o 0 I
— : : short term impacts
Mi B 0
MNIO 11 0
SI02 35 B
TiOz 44 13
W 1 0
Zn0 12 3




Regression Tree and Random Forest models can help
measure information content in input parameters

* These models can be used with missing data without requiring
Imputation
* A very important characteristic when incorporating data from many different in
vivo studies

* The nonlinear nature of the model structure can identify a likely upper
limit to the predictive utility of each input variable

» Careful validation necessary to prevent identification of noise as important

* Regression trees are easily readable unlike other machine learning
models



nformation gain by the addition of each branch is
recorded along with correlation and conditionality

* Measuring the error or variance reduction achieved by each
individual branch is a simple expression of variable value to model

________________

:J variable (units) : tutal dose (ugkg)
. < gplil criterion - < 5150
' Mean output + SD | 32.5 + 88.9
' n = # of data records | n =52 500
|r1r=1|;;||_|;-:||||:'!.- /\II‘IEﬂ |.IE|”E||' dﬂﬁﬂ{ﬂ{ 1'};'9 HE” postexposure ['-'-lH}I"-:}
is frue ia falbe 20,3 + 442 3:‘_14:?533
n = 50,700 s *T.E.DD

dose Co {pa'kyg) postexposure (days) /_H__"*-a____i
= R7T <1/.2

8.81+ 224 68.1 + 73.4 674 4 236 FDEE!PZEEI.JE;E (days)
n = 38,500 n = 9,600 = e 5o 2 825
n=1200

dose Cr (ug/=q) postexposure [days) dose Fe (pg'kg) R //_
[ < 1.04 J [ = 14.5 ] { < 2R00 } 106 £ 5.76

5.47 + 11.3 788 + 56.6 87.3 + 75.5 n= 2,400 290 + 596 281 + 80.7
n = 37,700 n=1,800 1= 7,200 n = 600 A = 600
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Information content
of CNT tox predictors
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* In CNT studies some
QSAR-like descriptors
were identified as
important predictors
of toxicity
* Length and Diameter
* Aggregation
* Metal impurity
content (Co, Fe, Cr,
Ni)
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Random Forest models do appear to find known relationships
and identify the relative importance of different properties

2.5 Mean Particle Size: 3.5 nm
Titanium

 Although Random :;‘:‘::';rtides
Forest models are
“dumb”—ignorant of
any underlying data
structure, they often
uncover plausible
looking dose-response
relationships assembled
out of step functions

Mean Particle Size: 100 nm
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OX

nat is the value to QSAR descriptors for metal

ides when considered as a class
o It seems Unllkely that Neutrophils (fold of control) [Instillation]
none of these jg
chemical properties £
are important in
some way .
* Combinations of ————-——- eeeeee
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Development of a new a
the expectation of dose-

* Seems odd to consider dose or
animal recovery time as
fundamentally similar concepts
to a nanoparticle property in
the data mining exercise

* Requires a modified regression
tree algorithm designed not to
predict a constant value in the
leaf nodes, but a function that
incorporates our knowledge of
the shape dose-response
relationships

gorithm to better reflect

response shape

Outcome = A + Ce 5% — Fe~ Pt
Where,
X is the dose or exposure metric
t is the recovery period
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The model contour surfaces show how dose-response
and recovery shift with changes in particle properties

Neutrophils (fold of control)
Regression Tree Variable Importance: Neutrophils (fold of control)
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Now particle properties can be analyzed for their effects
on dose-response rather than considered alongside dose

Neutrophils (fold of control)
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This approach shows promise for better quantifying
knowledge in the field

* The large number of independent studies in nanotoxicology should be
incorporated into QSAR modeling and evaluation as much as possible

* This process is one way of doing that and ensuring that we do not
ignore lingering sources of uncertainty in our knowledge base

* In the future...

 Complete testing of possible descriptor parameters including those that are
valid beyond the list of metal oxides

» Test and validate the QSAR descriptors in the new treed exponential
regression tree model for information content

* Expand data set to environmentally relevant exposure studies in other

organisms and investigate the effect of particle properties and QSAR
descriptors
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